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Strain energy density bounds for linear anisotropic
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Abstract. Upper and lower bounds are presented for the magnitude of the strain energy density
in lincar anisotropic elastic materials. One set of bounds is given in terms of the magnitude of the
stress field, another in terms of the magnitude of the strain field. Explicit algebraic formulas are
given for the bounds in the case of cubic, transversely isotropic, hexagonal and tetragonal
symmetry. In the case of orthotropic symmetry the sxplicit bounds depend upon the solution of
a cubic equation, and in the case of the monoclinic and triclinic symmetries, on the solution of
sixth order equations.

Bounds on the magnitude ot the strain energy density in linear anisotropic
elastic materials are needed in proofs of Saint-Venant's principle for these
materials (see, for example, Toupin [1], Horgan {2}, and the review of Horgan
and Knowles [3]). In this note we extend the method of bounding the strain
cnergy density employed by Horgan [4] to include specific anisotropic elastic
symmetries. We do this using a result of Mehrabadi and Cowin [5] in which
the coefficients of elasticity are expressed as a second rank tensor in a
six-dimensional space rather than as a fourth rank tensor in a three-dimen-
sional space. The results of Mehrabadi and Cowin [5) are a development of
ideas due to Kelvin [6]; see also Rychlewski [7]. The eigenvalues of the
six-dimensional, second rank elasticity tensor are the numerical coefficients in
the bounds obtained.

The anisotropic form of Hooke’s law is often written in indicial notation as

Tij = CijkmEknn (l)

where the C,,,, are the components of the elasticity tensor. There are three
important symmetry restrictions on the tensor C,,.,,. These restrictions, which
require that components with the subscripts ijkm, jikm, and kmij be equal,
follow from the symmetry of the stress tensor. the symmetry of the strain
tensor, and the requirement that no work be produced by the elastic material
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in a closed loading cycle, respectively. Written as a linear transformation in
six dimensions, Hooke’s law (1) has the representation, T =cE, or

-Tuw —Cn €2 €G3 Ca Cis "ns1 E, W

T, Ciz € €33 Caa €25 € Ey,

T Ci3 €23 €33 €4 €35 C36 Ess

Ty | = |cis Cas € Cas Cas Cag 2By, | 2
T, Cis €25 C35 Cas Css Csq 2E;
_Tu_ [ €16 €26 €36 Cas Cs6 Ceo | | 2E,; |

in the notation of Voigt. The relationship of the components of C,,, to the
components of the symmetric matrix ¢ is easily seen.
Introducing new notation, (2) can be rewritten in the form,

T =¢E, 3)

where the shearing components of these new six-dimensional stress and strain
vectors, denoted by T and E, respectively, are multiplied by /2, and & is a
new six-by-six matrix. Thus the matrix form of (3) is given by

( Ty ] { n I} Ci3 ﬁcl4 \/icls \/iclbq [ E,, ]

Ty 12 <2 €23 \/5024 \/56'25 \/Eczo E,
T3 _ €3 €y €3y 2cy, 2¢y5 s/ifae E,

\/iTZJ - \/i" 14 ﬁcza ﬁc,, 20 2cas 2c4 \/5513
\/ETU \/Ecls \/5025 \/5035 26'45 2(.‘55 2(‘56 \I/‘EE”
_\/ETIZ‘ i 2¢y6 \/icze 2035 2c4 2¢s6 2c6 v 2E,, ]

) 0

The symmetric matrix ¢ can be shown, Mehrabadi and Cowin [5}, to represent
the components of a second rank tensor in a six-dimensional space, whereas
the components of the matrix ¢ appearing in (2) do not form a tensor. The
inverse of the elasticity tensor ¢ is the compliance tensor § where § =&, thus

E=3sT, (3)

where § is also a second rank tensor in a six-dimensional space. The eigenval-
ues of the matrix ¢ are the six numbers A satisfying the equation

@-AnN=o, (6)
and their inverses are the eigenvalues of the matrix §

-(/ADN =0, )
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where the vectors N represent the eigenvectors of ¢ or §. The linear transfor-
mation (3) defined by & is a six-dimensional symmetric transformation,
assumed to be positive definite, which has, of course, six positive eigenvalues.
These eigenvalues will be denoted by A,, i=1,. .,6, and ordered by the
inequalities A, = - - - 2 A, > 0. It follows that

! |
AdBl<[TI<ABL =ITI<[El< 7T, (8

where the vertical bars on either side of a vector indicate the norm of the
vector, e.g.

f=/T T 9
The strain energy density is denoted by Z where
22=T-E=@E)-E=T-(1), (10)

and it can be expressed in terms of the strain eigenvector |E[N using the
eigenvalues of (6) as

28 = [BP{A [N]2 + Ao W] + A N1 + AN + AS N1 + Ag [N,
(1)

or in terms of the stress eigenvector |T]N using the eigenvalues of (7) as

2 Voo 2 L 2 _l.. V L ¥ _l_. NV 12 _l_
22=ITI {K[NI] +A2 [Nz] +A, [N3]2+A4[N4]2+A5 (Ns] +A6[N5]2}~
(12)

Recalling that the vector N is a unit vector (N - N = 1) in six dimensions, recall-
ing also the ordering of the eigenvalues by the inequalities A, > -- - =2 A4 > 0,
the results (11) and (12) yield the inequalities

AJEE<2E<ABF, and —[TP<2Z<--[if, (13)
A| A6

respectively. These inequalities represent the bounds of interest. For a partic-
ular elastic symmetry the bounds ( 13) are employed with the values of A, and
A, taken to be the numerically largest and smallest, respectively, of the
eigenvalucs listed in Table 1 for that particular symmetry. The second of the
inequalities (13) has been previously derived in [4] (p. 232) and illustrated
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Table 1. The sets of distinct eigenvalues A for ecach of the ten distinct elasuc symmetnies. The
multiplicity of these eigenvalues is discussed in [5).

Isotropic symmetry

€y + 2013, 204, (i€, 34 + 2u, 2u)
Cubic symmetry

) +20)3, 6y — €13, 204

Transversely isotropic symmetry

en + ez +c3) +8ck + e+, — )

en+cizt+cyy) —\/8cf,+(c“ +c;— ),
€11 = €120 2044

Hexagonal (7) symmetry

eri + ez +ey3) +\/8"f3+("u + ¢, —€33)’l,

Hen + e+ c33) — /8ehy + (e + €2 — 63)°):

Hcr = 12+ 2c48) +/16(ciy + ¢35} + (c1) — 12— 2caa)’)s

e — €12+ 2c4) -\/lﬁ(ffc*"'fs) + (61 — €12 — 2cu) ),

Hexagonal (6) symmetry

Wen + ez +c33) +/8cky + (e + €3 —¢39) ),

sllen + ez +c33) — \/8"}3 + e+ — ¢y,

ey = 13+ 2c0) + S 16c3, + (c4y — €12 — 2¢4)),

Llen — €12 + 2c04) — /16¢3, + (€ — €12 — 2caa)],

Tetragonal (7) symmetry

en + et e39) +/Bedy+(eny + 3 — 6337

e + cia+ 653) — /Bc + (e + €12 — €33)7),

H(en — 1z + 2c46) + /163, + (€1 — €12~ 2¢68) )

Hler — €12+ 2066 — /16c25 4 (€)1 — €13 — 2¢66)°): 2644

Tetragonal (6) symmetry

Wen +eip+c33) +Bedy + ey + €2 —23)’),

Hen +enn+ey) —\/8"%3*'("1: +ep—en)’h

€14 = €120 2Chge 2044
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Table | (Continued)

Orthotropic symmetry

€ Gz €
2c44, 2¢s5, 2¢45, and the eigenvalues of the mairix |e¢); ¢y ¢y

€13 € €3

Monoclinic symmetry

[ cn €12 Cia \/i"u 0 0 -I
€2 €22 € \/i"u 0 Y
Eigenvalues of the matrix e » > \/E‘-'u 0 0
ﬁc“ ﬁcu \/ic,‘ 2 0 O
0 0 0 0 2c45 2y
0 0 0 0 205 2ce, j

Triclinic symmetry

[ n €2 €13 ﬁ“u ﬁl’ns ﬁ"u
€12 €2 €2 \/ifu \/ifzs \/5520
Eigenvalues of the matrix o » i \/ic,. ﬁc,, \/it‘u

ﬁcl . ﬁc“ ﬁc w 2Ce 2c,s 2Ces
\/EC 15 ﬁ‘zs \/5‘-' 3 2es 2cy5 2¢46
ﬁc 16 \/icm ﬁc” 2 2056 2c4

there for the case of isotropic symmetry. The first of (13) has been given in
Gurtin [8] (p. 85) and, in the case of isotropic symmetry, by Villaggio [9} (p.
46). Toupin [1] and Gurtin [8] employ the terminology maximum elastic
modulus for A, and minimum elastic modulus for Ag; see also [3] (p. 240).
Kelvin (6] called the A,, i=1,...,6, the six principal elasticities of the
material; Pipkin [10]} uses the term “principal compliance™ for the inverse of
the same quantities; and Rychlewski [7] suggests, with persuasive historical
Justification (but contrary to the contemporary trend to avoid eponyms), that
they be called the Kelvin moduli. Applications of the inequality represented by
the first of (13), in the isotropic case, to obtain bounds for total energies and
related quantities are described by Villaggio [9] (see. e.g., p. 400, 418).

In closing, we remark that the positivity of A, i = L,.. ., 6, is equivalent to
the positive definiteness of I, expressed as a quadratic form in either T or E.
The explicitness of the cigenvalues tabulated in Table 1 here thus enables one
to write down necessary and sufficient conditions for positive definiteness of £
dircctly in terms of the symmetric Voigt matrix ¢. The resuiting conditions are
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simpler than the expressions involving principal minors of ¢ that are usually
employed in the literature.
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